A Field Test of a

Grade Severity Rating System

*UんLUZiV UKLY"
Return to:

Colorado Department of Highways Technology Transfer Unit

Raymond Erickson Jr. PE

Colorado Department of Highways

A FIELD TEST OF A GRADE SEVERITY RATING SYSTEM

Raymond C. Erickson, Jr. P. E.
Colorado Department of Highways 4201 East Arkansas Avenue Denver, Colorado 80222

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Highways or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Technical Report Documentation Page

1. Report No. CDOH DTR R 85-6	3. Resipient's Catalog No.
4. Title and Subtitle A Field Test of a Grade Severity Rating System	5. Report Date April, 1985
	6. Performing Organization Codz
7. Author!s) Raymond C. Erickson, Jr. P. E.	8. Performing Organization Report No. CDOH DTR R 85-6.
9. Performing Organizotion Name ond Address State Department of Highways, Division of Highways, State of Colorado, Staff Traffic Engineering Branch, 4201 E. Arkansas Avenue, Denver, CO. 80222	10. Work Unit No. (TRAIS)
	11. Controct or Grant No.
	13. Type of Report and Period Covered
12. Sponsoring Agency Name ond Address State Department of Highways 4201 E. Arkansas Avenue Denver, CO 80220	
	$1983-1985$
	14. Sponsoring Agency Codo
15. Supplementary Notes Prepared in cooperation with the U. S. Department of Transportation Federal Highway Administration	

16. Abstract

A national research project has shown that truck brake temperature on grades is a major problem causing runaway trucks. Control of overheating of truck brakes can be achieved through correct speed. A truck brake heating model led to development of a Grade Severity Rating (GSR) System to be used with a Weight Specific Speed (WSS) sign.
The Colorado Department of Highways has cooperated with an FHWA contractor to test the GSR sys.tem and the WSS sign. Interim results of the test have been inconclusive as to the reduction of speed of heavy trucks.

implementation

The WSS sign study should be extended for three years to permit additional study of the effectiveness of the signs. Before and after accident data will be submitted to FHWA to indicate the effect of these signs on driver response.

17. Key Words Overheating of truck truck braking Model, Speed, Grade Severity effectiveness of WSS	downgrade 18. Distribution Specific System,	18. Distribution Statement	
19. Seeurity Classif. (of this report)	20. Security Classif. (of this page)	21. No, of Pages	22. Price

Acknowledgement
The author wishes to acknowledge research material used in this report from previous research accomplished by Walter A. Johnson, Systems Technology and Fred R. Hanscom, Director, Transportation Research Corporation.

Installation of the experimental Weight Specific Signs was made possible by P. R. Mc01lough, District Engineer, District I, Dale McCrumb, District I, Traffic Engineer and Maintenance Section I, Colorado Department of Highways.

This report would not have been possible without the valuable assistance and contributions of Engineering and clerical personnel of the Staff Traffic Engineering Branch.

TABLEOF CONTENTS

PAGE

Objective of this Project. 1
Background 1
Field Test Before 2
The Truck Downgrade Braking Model 5
Experimental Sign Format 5
After Data Collection 7
Preliminary Finding From the Contractor 10
Conclusions and Recommendations 10
Implementation 13
References 15
List of Exhibits
Exhibit 1
Truck Downgrade Braking Model 4
Exhibit 2
Weight Specific Speed Sign Layout 6
Exhibit 3I 70 Grade East Portal Eisenhower Tunnel to Georgetown Interchange. \&
Exhibit 4
Preliminary Analysis of Before Versus acclimation data collected at the Colorado Site 9
Exhibit 5
Compliance with GSR Posted Speeds 11Appendix A - Field Data Collection Proceduresfor Highway Grades. A-1
Appendix B - Weight Distribution of Trucks
entering Runaway Truck Ramps in
Colorado . B-1
Appendix C - Computer Analysis of Weight
Specific Speeds C-1
Appendix D - Runaway Truck Accidents - Downhill
Locations Where Escape Ramps are
Not in Place D-1

Objective of this Project

The objective of this project is to field test Weight Specific Speed (WSS) signs to determine if they provide an effective means of providing information to a driver of a heavy truck about the speed he should travel a grade in relation to the gross weight of his vehicle.

Background

Overheating of truck brakes on grades is a primary cause of runaway trucks. A national research project report number(FHWA RD-79-116) developed a truck downgrade braking model through instrumental field testing. Brake "fade" is primarily a brake temperature phenomenon, accordingly a brake temperature limit can be used to investigate potential downgrade problems. For a given speed the use of temperature to specify downhili braking requirements is equivalent to the use of stopping distance or deceleration. The report developed a grade severity rating (GSR) from the truck downgrade braking model. In conjunction with the GSR Weight Specific Speed (WSS) signs were formated to provide truck drivers a speed selection within acceptable brake temperature limits. These signs provide information about a speed that a vehicle driver should travel a downgrade in relation to gross weight of his vehicle.

In 1982 the Federal Highway Administration (FHWA) Office of Research awarded a research contract to field-test the effectiveness of an experimental advisory sign for trucks on downgrades. The Colorado Department of Highways agreed to participate in fieldtesting the WSS sign. Transportation Research Corporation of Haymarket, Virginia received the award from FHWA for the field test of the signs. In August of 1983
the FHWA Contracting Engineer and a Colorado Department of Highways Traffic Engineer made a field review of highway grades in Colorado with runaway truck incidents.

A site for field testing the WSS signs was selected on the eastbound lanes of I 70 between the east portal of the Eisenhower Tunnel and the Georgetown Interchange.

Field Test Before Data

For the period September 20, 1983 to September 24, 1983 data was collected by Transportation Research Corporation personnel for trucks traveling eastbound on I 70 at milepoint 228 between Silver Plume and Georgetown. Speeds of trucks were matched with visual descriptive information including: truck type, color, operator/ company name and identification number. Positive matches were obtained for approximately ninety percent of the total truck sample. A total of 768 trucks were counted during the five-day study period. An 80% match of speed and weight data was obtained and, of the trucks counted, 173 had a gross vehicle weight exceeding 70,000 lbs.

Utilizing the truck downgrade braking model from FHWA Report Number RD-79-116, the April. 1981 Draft Report, The Development and Evaluation of a Prototype Grade Severity Rating System, a program was written in BASIC to calculate final brake temperature given vehicle weight, speed, and slope data. Program outputs provide Weight Specific Speeds for desired weight classes.

From the east portal of the Eisenhower Tunnel to the Georgetown Exit I 70 descends from an elevation of 11,013 feet to 8,507, a decrease of 2,506 feet. The 12.6
mile section of roadway entails grades ranging from -6.9% to -1%, with the steeper grades in excess of -6% predominating the last 2.25 miles between the Silver Plume and Georgetown interchanges.

Variables used in the BASIC program for final brake temperature are as follows:

Variable/Unit		Basic Language
Slope	Radians	R
Initial brake		
temperature	OF	T2
Speed	mph	S1
Final brake temperature	${ }^{\circ} \mathrm{F}$	T9
Incremental		
increase in brake temperature during emergency stop	$0^{\circ} \mathrm{F}$	T8
emergency stop		T8
Power absorbed by brakes	hp	H1
Maximum safe final brake temperature	${ }^{\circ} \mathrm{F}$	T7

Exhibit 1 page 4 is a chart showing the Weight Specific Speeds generated by this program for I 70 eastbound (Georgetown Hill) between the Eisenhower Tunnel and Georgetown Interchange. The program calculated safe speeds for gross vehicle weight in $1,000 \mathrm{lbs}$. intervals between 70,000 and $80,000 \mathrm{lbs}$.

For Georgetown Hill a break point in speeds occurs at $74,000 \mathrm{lbs}$., and a maximum speed of 55 mph . Vehicles with a gross weight of $75,000 \mathrm{lbs}$. should travel the hill at 51 mph . Increased weight intervals of $1,000 \mathrm{lbs}$. result in a sequential reduction of safe speeds with the result that an $80,000 \mathrm{lb}$. vehicle should descend the hill at 32 mph .
© $*$ TRUCK DOUNGRADE BRAKING MODEL $* * *$ STAFF TRAFFIC AND SAFETY PRDJECTS ERFNCH GEDFGETDWN HILL
SPEED DF 32 MPH SAFE FDR WEIGHT DF 80000 PUUNDS SPEED DF 34 MFH: SAFE FGR WEIGHT OF 79000 PUUNDS SPEED DF 37 MPH SAFE FDR WEIGHT OF 78000 . PGUMDS SPEED DF 40 MPH SAFE FDR WEIGHT OF 77000 PDUNDS SPEED DF 44 MPH . SAFE FDR WEIGHT OF 76000 . PQUMDS SPEED OF 51 MPH SAFE FOR WEIGHT QF 75000 PQUNDS SPEED UF 55×1 PH SAFE FDR WEIGHT IF 74000 PLUNDS SPEED DF 55 MPH SAFE FDR WEIGHT DF 73000 PQUNDS SPEED OF 55 MPH SAFE FRR WEIGHT QF fion 2000 IPDUNDS SPEED OF 55 MPH SAFE FGR WEIGHT OF 71000 PGUNDS SPEED UF 55 MPH SAFE FUR WEIGHT DF 70000 PQUNDS
fVG. GRade df this 12.93 MILE SLDPE IS 3.8 percent
CP $\quad 1.510$ SECS.
RUN CIMPLETE.

Exhibit 1

The Truck Downgrade Braking Model

The Truck Downgrade Braking Model is based on a temperature limit concept. For a heavy truck traveling down a steep grade the maximum safe speed is defined as a speed that will not produce a brake temperature that will overheat the truck brakes. A truck on a grade should have enough braking capacity to maintain a steady descent speed and allow an emergency stop on the hill or at the bottom of the hill.

The maximum allowable final brake temperature (${ }^{\top} 1 \mathrm{im}$) is the sum of two sources of brake heating; one the heating from a steady grade descent at a speed V_{0}, the other resulting from a braked stop initiated at speed V_{0}.

The value of T_{1} im was selected to be $500^{\circ} \mathrm{F}$. This is based on a range of brake temperatures at the start of fade for various linings, the typical degree of brake unbalance found on random trucks whose brake temperatures were measured.

Experimental Sign Format

In June of 1982 the Federal Highway Administration Office of Traffic Operation authorized field testing of the experimental WSS sign. Exhibit 2 shows a layout of the sign. For the signs to be installed on Georgetown Hill two weight intervals from the listing of the truck Downgrade Braking Model were selected for the sign message. A review of the weight class of vehicles entering the runaway truck ramps on Colorado Highways showed that 50% of the trucks using the ramps exceeded a gross vehicle weight of $70,000 \mathrm{lbs}$. Therefore, the two weight classes and speeds shown on the WSS sign are representative of the mix of truck weights found that have a significant history of brake failure on grades on Colorado Highways.

Stencil black legend and border on reflectorized yellow background

After Data Collection 4.

Two WSS signs were installed on I 70 during early November 1983. The first sign is located at milepoint $216,0.7$ miles east of the Eisenhower Tunnel and the second sign is at milepoint $225,0.9$ miles west of the Silver Plume exit. A profile of the grade with sign locations is shown on Exhibit 3.

During the week of November 7 the contractor collected "acclimation" data to determine if there was any adaptation on the part of truck drivers to the speed messages of the WSS signs.

Exhibit 4 from the Transportation Research Corporation report provides a preliminary analysis of before and after (acclimation) data.

Smaller samples of data for the after study were obtained due to the fact that snowfall limited data collection.

The contractors interim report found that the acclimation phase provided good statistical reliability with 95 th percent confidence of the mean with a 2.0 mph accuracy. A conclusion of the contractor's interim report was that "1ittle if any effect is realized from the presence of the Weight Specific Sign. While a slowing tendency is evident for the $75,000-80,000$ pound trucks, as their observed mean speeds approached that posted on the Weight Specific Sign, this speed reduction is not statistically significant (nor is the 48 to 52 percent reduction which exceeded the posted speed). Virtually no mean speed difference is evident for the 70,000-75,000 pound trucks (as could be expected due to their slower-thanGSR speed in the before condition). A deceptively dramatic reduction (8 to 21 percent) in proportion of the trucks in this class exceeding the GSR speed is not statistically significant due to the small sample. Trucks lighter than 70,000 pounds exhibited a slight, but statistically non-significant, speed increase between the before

Field Test of a Grade Severity Rating System
170 East Portal Eisenhower Tünnel to Georgetown Interchange

GSR Category

	75-80,000 pounds 32 mph		70-75,000 pounds 51 mph		$<70,000$ pounds$55 \mathrm{mph}$	
	BEFORE	ACC	BEFORE	ACC	BEFORE	ACC
Sample Size	85	30	78	24	605	200
Mean Speed	$\begin{aligned} & 35.1 \\ & \mathrm{mph} \\ & \hline \end{aligned}$	$\begin{array}{r} 32.7 \\ \mathrm{mph} \end{array}$	$\begin{array}{r} 35.7 \\ \mathrm{mph} \end{array}$	$\begin{array}{r} 35.5 \\ \mathrm{mph} \end{array}$	$\begin{array}{r} 53.6 \\ \mathrm{mph} \end{array}$	$\begin{array}{r} 54.7 \\ \mathrm{mph} \end{array}$
(95\% confidence)	$\begin{array}{r} \pm 1.5 \\ \mathrm{mph} \end{array}$	$\begin{array}{r} \pm_{1.8} \\ \mathrm{mph} \end{array}$	$\begin{array}{r} \pm_{1.8} \\ \mathrm{mph} \end{array}$	$\begin{array}{r} \pm 2.0 \\ \text { mph } \end{array}$	$\begin{array}{r} \pm_{0.5} \\ \mathrm{mph} \end{array}$	$\pm .8$
\% Exceeding GSR Speed	52	48	21.	8	57	64

Table A - Preliminary Analysis of before versus acclimation data collected at the Colorado site
and acclimation condition.

In conclusion, comparison of before versus acclimation data revealed some minor (statistically non-significant) tendencies toward compliance with GSR-posted . speeds. Slight speed reductions were noted for 75,000 to $80,000 \mathrm{lb}$. trucks, while a smaller proportion of the 70,000-75,000 1 b . trucks exceeded the GSR-posted speed. These tendencies are insufficient to demonstrate a valid statistical effect. A comprehensive determination of sign effect will be undertaken during the "after" data collection this coming fall."

Preliminary Finding From the Contractor

On January 30, 1985 a copy of a preliminary finding in the FHWA study was transmitted to the Staff Traffic Engineering Branch by the contractor, Results of the study indicate generally poor compliance with posted speeds. Exhibit 5 shows data for six grades where experimental WSS signs were posted.

Conclusions and Recommendations

This report is a minute portion of the work that has been done to create an improvement in safety for trucks on highway grades. Ten states are participating in the overall program which should contribute to a more significant data base. The Weight Specific Speed sign is an alternative countermeasure to construction of runaway truck ramps and should be used as an adjunct or additive to the existing series of signs (W7-1 to 4) in Part II-C in the Manual on Uniform Traffic Control Devices (MUTCD). At the present time there are ten runaway truck escape ramps on mountain highway grades in Colorado with a recorded history of over 413 usages. A study of downhill grades where escape ramps are not in place showed that there are 14 locations where runaway truck accidents have occurred. The cost effectiveness of runaway ramp construction at these locations has not been investigated; however, installation

Site (Total Sample)	Weight Class (kips)	Posted Speed (mph)	Sample Size	Average Actual Speed (mph)	Proporvion Exceeding
Posted Speed					

Exhibit 5 - Compliance with GSR Posted Speeds
of the WSS signs at selected grades where the accident rate exceeds 1.0 per 100,000 downhill trucks might provide a low cost means of reducing accidents for heavy trucks.

So far the field test of the WSS sign has been inconclusive. Research in the field of sign recognition has shown that a high percentage of drivers do not recognize the intended meaning of many signs. However, given the fact that the WSS sign is intended to supply special information to a unique segment of the driving population it is possible that more widespread use of the sign would increase recognition and compliance by drivers of heavy vehicles.

There has been pressure by enforcement authorities to solve the runaway truck problem by means of speed enforcement of heavy vehicles. While this seems to be effective the fact remains that incidents of runaway vehicles are occurring on the Colorado I 70 grade where a 25 MPH speed limit is in place for all vehicles over 10,000 1bs., G.V.W.

The Colorado Truck Size and Weight Report shows that the average weight of an empty combination truck is in the range of 30 to 35 thousand pounds. Further, the report shows that 30 to 35% of combination trucks traveling Colorado highways are not loaded. A conclusion is that enforcement of a 25 MPH speed limit for vehicles over 10,000 G.V.W. is a severe restriction for drivers of unloaded trucks.

As a recommendation further study should be done to evaluate the WSS signs. The Colorado. Study site at the I 70 Georgetown Hill should be utilized for further research since truck speed data can be correlated with truck weight data from the Dumont Weigh Station located 6 miles east of the Georgetown interchange.

An additional study site should be located on the westbound lane of I 70 on the west side of Vail Pass. The Vail Pass grade is steeper than the Georgetown Hill study site. The average grade for Georgetown Hill is 3.8 percent. The westbound I 70 Vail Pass Grade is 4.7 percent. There have been over 60 usages of the Vail Pass Truck Ramps which indicates that the steeper average grade creates a higher incidence of braking problems. A further reason for utilizing the Vail Pass grade for additional research for WSS signs is that before data has been collected by the contractor on this grade.

Implementation

Implementation of the WSS sign is dependent on the results of the field test authorized under the FHWA contract. The Colorado Department of Highways participation in the field test of the experimental signs was given impetus by the magnitude and severity of runaway truck accidents on grades in Colorado. As a result a program was initiated to construct runaway truck escape ramps at high truck accident locations. There are 10 runaway ramps located on State Highway grades in Colorado. For the period 1976 to 1984 there have been 413 usages of these ramps.

For runaway truck incidents where mechanical or equipmert failures have occurred our reports show that 144 incidents of this type involved brake related problems with over 30 percent reporting overheating of brakes as the reason for utilizing the runaway ramp. As a result it is reasonable to believe that the present signing system for warning truck drivers about severe downgrades is not effective.

The WSS sign offers pertinent information to the driver that he may relate directly to his vehicle and the grade that he is traveling. It is recommended
that use of the WSS sign be extended to other grades where runaway truck accidents have occurred. There are thirteen such locations in Colorado. Posting of WSS signs on these grades should be considered under the experimental program. The sign locations would be monitored over the study period.

To provide additional information under the program, the Colorado State Highway Department would perform an accident study after the signs had been in place for three years and submit a report to FHWA of the accident history.

References

1. Thomas T. Myers, Irving L. Ashkenas, Walter A. Johnson, Feasibility of a Grade Severity Rating System FHWA-RD-116 August 1980 Final Report
2. Walter A. Johnson, R. Wade Allen, The Development and Evaluation of a Prototype Grade Severity Rating System Draft Report April, 1981 Contract DOT-FH-11-9336
3. A Report on Truck Escape Ramp Use in Colorado Revised April, 1983, State Department of Highways, Division of Highways, State of Colorado, Staff Traffic and Safety Projects Branch
4. Fred R. Hanscom, P. E. Director, Transportation Research Corporation, Interim Result a report on a Field Test of a Grade Severity Rating System August 7, 1984
5. Colorado Truck Size and Weight Study, 1979 Report State Department of Highways, State of Colorado, Division of Transportation Planning
6. Manual on Uniform Traffic Control Devices
U. S. Department of Transportation, Federal Highway Administration.

Appendix A
Field Data Collection Procedures for Highway Grades 2
Most of the mountain highway grades in Colorado are multiple grade hills, Grades vary sequentially according to the terrain traversed by the road. In many cases grade data is not available from roadway plans. The following is a procedure presented in reference number 2 for determining the value of R for the Truck Downgrade Braking Model for a specific grade; a driver and a recorder are required:

1. It is critical to determine the steepness and length of the grade quite accurately.
2. Use a car with a calibrated odometer and a sensitive hand-held altimeter.
3. Drive slowly down the grade with the car windows open so air pressure inside the car is the same as air pressure outside. Tap the altimeter frequently to counteract sticking in the instrument.
4. At each 20 feet of altitude change, the person holding the altimeter calls now and the driver estimates the odometer reading to the nearest hundredth of a mile.
5. The driver calls out the odometer reading to the recorder who records the mileage and the altitude.
6. This procedure is repeated several times, driving both uphill and downhill.
7. Using the altitude and distance data a grade profile is plotted for each run recorded.
8. An average of the individual profiles is used as the best estimate of the grade profile.
9. A straight line may be fitted between two points to determine the slope and percent of grade.

Appendix B

WEIGHT DISTRIBUTION
OF
TRUCKS ENTERING
RUNAWAY TRUCK RAMPS IN COLORADO 3.

GVW Kips
Class Interval

* Based on Revised Apri1 1983 A Report on Truck Escape Ramp Use in Colorado Appendix A Summary of Use, For 282 Usages Weight data was not available for 24 vehicles entering the ramps.

File No. 704.28

MEMORANDUM

DEPARTMENT OF HIGHWAYS
4201 East Arkansas Ave.
Denver, Colorado 80222

DATE: December 15, 1981
TO: Ray Erickson
DOH File 16-00

FROM: Matt Reay and Dan Lyons
SUBJECT: Computer Analysis of Weight Specific Speeds

As you know, the concept of a grade severity rating system (GSRS) has been studied extensively, and a workable example of such a system is described in Report No. FHWA-RD-79-116, Feasibility of a Grade Severity Rating System. Another report, entitled The DeveTopment and Evaluation of a Prototype Grade Severity Rating System,(April 1981) details the calculations and formulas established by the first, and presents a method for predicting final brake temperatures of 5 axle vehicles using a programmable calculator.

Shown here is a similar program, written in BASIC for a CDC 6400 computer. This program, like the HP67/97 program in the report, calculates final brake temperature given vehicle weight, speed, and slope data, but unlike the calculator program, our program outputs the Weight Specific Speeds in each case. This eliminates the need for the engineer to repeatedly enter data for each combination of weight and speed.

Attached is a program listing with a sample data list and sample output. The procedure is the same as that followed in Appendix C of the April 1981 document mentioned above, except that certain variables were renamed to accommodate the language used. Those changes are as follows:
FHWA Document BASIC Program Variable name, unit

θ	R		Slope, radians
To	T2		Initial brake temperature, ${ }^{0}{ }_{F}$
V	S1		Speed, mph
T_{f}	T9		Final brake temperature, ${ }^{0} \mathrm{~F}$
ΔT_{f}	T8		Incremental increase in brake temperature during emergency stop, ${ }^{\circ}$
HP_{B}	H1		Power absorbed by brakes, hp
$\mathrm{T}_{\text {lim }}$	T7	C-1	Maximum safe final brake temperature, ${ }^{\mathrm{O}_{\mathrm{F}}}$

Ray Erickson
Computer Analysis of
Weight Specific Speeds
Page 2

Also attached is a chart showing the weight specific speeds (iNS) generated by this program for seven selected locations in Colorado. Note that this method ignores the effect of horizontal curvature in the roadway, as evidenced by a WSS of 55 mph for the lowest weight class on Rabbit Ears Pass. It should be emphasized that this method is only a tool, and that it cannot and should not replace good engineering judgment.

DAN LYONS
MR/DL:bn
cc: File

BASIC Program to determine weight specific speeds

```
    81/13/15. 08.43.11.
FRDGRAM IIAM1
```

```
00100 REM FROGRHM IETEFMINES VHLUES FDR WEIGHT SPEGIFIL SFEENS
00E00 FEM UATM CDMSISTS OF INITIAL ERAKE TEMF FOLLDWED E'Y
00300 REM SLDFE IN EADIANS ANI LENGTH IN MILES FOR EACH GRADE
00400 PRIMT "ENTER GRHDE IDEMTIFIER IM DUUTES";
00500 INPUT AES
00600 FRINT
00700 FFEINT
00E00 FPEINT
00900 FRINHT " * * TRUNKK DOWMGRADE ERAKING MODEL * * *"
```



```
01100 FRINT TAB(15);AB
01E00 FRINT
01300 FOF W=$5000 TO 50000 STEF -5000
01400 FOR S1=55 TD 1 STEF -1
01500 REHD TE,R:L
01600 K1=1.23+(.0256*S1)
01700 KE=1/(.1+.00208+S1)
01800 TS=(3.11*W (S1** Z) / 100000000
01900 H1= (()W*R)-(450+17.25*S1)) (S1/375) -73
0E000 E= - 1*K1*L) S1
02100 E1=1-EXF(E)
0E200 TG=TE+((90-TE+(k E*H1)) (E.1))
0S300 TT=TS+TG
0E400 IF TT>500 THEN 02900
02500 TE=TG
02600 NOIATA 03300
0ET00 FEAD R,L
0こS00 GO TD 01900
02900 RESTIRE
03000 NEKT S1
03100 FRINT "NO SAFE SFEED FDR WEIGHT OF"," FQUNHDS"
03E00 GO TD 03400
03800 FRINT "SFEED OF"S1" MPH SAFE FOR WEIGHT OF",!" FOUNLS"
03400 FREINT
03500 FESTOFE
0S600 NEKT W
03700 STOF
10000 DATA 150
10001 INTA . 0692,2.3
10002 DATA .0685,1.95
10003 INTA . 06SE,3.2
10004 INTA .0430,.E9
```


Sample run ot liASIC E'rogram

```
BUN
    31/12/15. 03.44.04.
FFOGFHM LIFH1
ENTEF GRAIIE IIENTIFIER IH MUOTEST "FHEBIT EHFS FASS"
* * TRINEK IIGINGEFDE EFHKINIE MULIEL * * *
    F'AEEIT EAPS FHSS
SFEEI DF 11 MFH SHFE FOF WEIEHT OF SSODO FOUNDS
SFEED QF 12 MFH SHFE FOR WEIEHT OF S0000 FOUHNS
SFEEI OF 13 MFH SFFE FDR WEIGHT DF 75000 FQUNIS
SFEED DF 1E MFH SRFE FDR MEIGHT DF 70000 FOLINDS
SFEEI IF 1G MPH SHFE FOR WEIGHT QF E5000 FOUNIS
SFEEI [IF ES MFH SHFE FOR WEIGHT OF SOOOO FOUFIS
SFEEI DF 3% MFH SFFE FOR WEIGHT DF 55000 FOINHS
SFEEI IF 5S MFH SFFE FQR WEIGHT OF 50OOD FGINUS
CP 0.355 SECS.
F|NH EDPMFLETE.
```

WEIGHT SPECIFIC SPEEDS FOR VARIOUS GRADES IN COLORADO

*Vehicles in excess of $80,000 \mathrm{lbs}$. ore not allowed on interstate highwoys, except by special permit.

```
TEFMIHAL - 037
```

(xClRC. 10 N.N

- FILE NAME: DRII
LAST CONTFOL STATEMENT-

PROJECT: PHAP
TERMINAL: 15, TTY

```
PREVIGUS SESSIOH RECQVERED RT POINT IF INTERRUPTIDN:
TERMINAL - 037
FILE NAME: IAN
LRST CUNTRUL STATEMENT-
LAST CIMMHAND-RNH
    \mathrm{ ESSIIUN STATUS - MNITING FUR COMMMAID.}
EHTER (CR) TQ CDIMTIIUEE.
EHTER STOP TD TERMINIATE EXECUTIDN.
```


10001 DATA. $0662, .26$
10002 DATA . $0690, .15$
10002 DATR 0590,
0003 DATR -INT.
s
-TEPN

GEORGETOWN
HIM FAST YIU ,IRINA GD, HUH? © S\%

27.99	143.163	176.153	
27.99	187.249	215.239	49 section)
27.99	210.364	233.854	
27.99	221.976	243.965	$100,00016$.
27.99	224.645	292.636	
27.99	240.344	253.334	

 \(\begin{array}{lll}27.99 & 247.642 & 275.632\end{array}\)
 \(\begin{array}{lll}27.99 & 273.658 & 301.648 \\ 27.99 & 285.778 & 313.768\end{array}\)
 \(\begin{array}{lll}27.99 & 285.778 & 313.768 \\ 27.99 & 298.326 & 326.316\end{array}\)
 \(\begin{array}{lll}27.99 & 398.325 & 326.253 \\ 27.99 & 315.876 & 341.243 \\ 27.99 .866\end{array}\)
 \(\begin{array}{lll}27.99 & 315.876 & 343.866 \\ 27.99 & 338.494 & 366.434\end{array}\)
 \(\begin{array}{lll}27.99 & 338.494 & 366.494 \\ 27.99 & 347.309 & 375.29\end{array}\)
 \(\begin{array}{lll}27.99 & 364.496 & 392.48 \\ 27.99 & 358.933 & 386.92 \\ 27.99 & 381.805 & 409.795\end{array}\)
 \(\begin{array}{lll}27.99 & 381.805 & 401.62\end{array} \quad 429.8\)
 \(\begin{array}{lll}27.99 & 389.128 & 417.1 \\ 27.99 & 404.85 & 432.85\end{array}\)
 \(\begin{array}{lll}27.99 & 404.85 & 432.8\end{array}\)
 \(\begin{array}{lll}27.99 & 437.659 & 455.549 \\ 27.99 & 449.464 & 477.454\end{array}\)
 \(\begin{array}{lll}27.99 & 465.392 & 483.332 \\ 27.99 & 461.77 & 439.75\end{array}\)
 \(\begin{array}{lll}27.99 & 461.77 & 489.75\end{array}\)
 \(\begin{array}{lll}27.99 & 450.997 & 478.987 \\ 27.99 & 457.823 & 435.813\end{array}\)
 \(27.99 \quad 442.361 \quad 470.351\)
 k 27.97 . 455.655 483.645
 \(\begin{array}{lll}27.39 & 450.809 & 478.79\end{array}\)
 \(27.99 \quad 456.091\) 484.68
 \(27.99 \quad 450.472 \quad 478.462\)
 27.99456 .7 d84.6
 27.99 440.243 46R.338
 \(\begin{array}{lll}27.99 & 452.458 & 430.448 \\ 27.99 & 433.495 & 481.485\end{array}\)
 \(\begin{array}{lll}27.99 & 453.435 & 481.485 \\ 27.99 & 438.155 & 466.145 \\ 27.99 & 480.93 & 503.82\end{array}\)
 27.99 480.93 STURE 503.92
 TEMPERATURE EXCEEDED RT A SPEED OF 30 MPH
 ABDRT. OCCURS IH . 63 MILE SECTIDII
 WITH A BRAKE TEMPERATURE DF 509.92 DEGREES
    ```
CP 0.332 SECS.
    ! Vinc:\##, 
```

Appendix D
STATE DEPARTMENT OF HIGHWAYS
DIVISION OF HIGHNJAYS - STATE OF COLORADO STAFF TRAFFIC AND SAFETY PROJECTS BRANCH

Runaway-Truck Accidents--Downhill Locations Where Escape Ramps Are Not in Place

| SH | | Location | Total
 Truck
 Accs. | Fatal
 Truck
 Accs. | Injury Truck Accs. | No. of Downhill Trucks Per Day | Acc. * Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 0 | Monarch Pass EB MP 202-211 | 11 | 2 | 5 | 115 | 8.7 |
| 550 | \emptyset | ```Coal Bank Hill SB MP 51-52``` | 4 | 2 | 1 | 55 | 6.6 |
| 139 | | Douglas Pass NB MP 37-38 | 4 | 0 | 1 | 60 | 6.1 |
| 50 | | Monarch Pass WB MP 190-199 | 7 | 0 | 2 | 110 | 5.8 |
| 41 | | Nine-Mile Hill S. Whitewater NB MP 149-151 | of 4 | 1 | 3 | 105 | 3.5 |

| 6 | Loveland Pass WB
 MP 216-218 | 2 | 1 | 1 | 55 | 3.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

N. of Gateway SB $\quad 3$
MP 116

25 Raton Pass NB
MP 2-6
$50 \quad$ E. of Cimarron WB
MP 117-118

50
W. of Canon City WB

MP 268-269

19
W. of Boulder EB

2
0
100
1.8

Runaway-Truck Accidents--Downhill Locations (continued) Page 2

| SH | Location | Total
 Truck Accs. | Fatal Truck Accs. | Injury Truck Accs. | Downhill Trucks Per Day | Acc. * Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 285 | **Crow Hill SB MP 222 | 3 | 1 | 1 | 135 | 1.2 |
| 70 | Floyd Hill WB MP 244-245 | 6 | 2 | 3 | 680 | 0.8 |
| 160 | Hesperus Hill, W. of Durango EB MP 77-78 | 3 | 1 | 1 | 235 | 0.8 |
| 91 | Fremont Pass NB MP 17-19 | 1 | 0 | 1 | 110 | 0.8 |
| 70 | Georgetown Hill EB MP 227-228 | 4 | 3 | 0 | 640 | 0.6 |

* Accident Rate $=$ runaway-truck accidents per 100,000 downhill trucks
** Accident History 7/26/76 to 9/1/81
D Locations where Runaway Truck Ramps have recently been constructed

